If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-84x+576=0
a = 1; b = -84; c = +576;
Δ = b2-4ac
Δ = -842-4·1·576
Δ = 4752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4752}=\sqrt{144*33}=\sqrt{144}*\sqrt{33}=12\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-12\sqrt{33}}{2*1}=\frac{84-12\sqrt{33}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+12\sqrt{33}}{2*1}=\frac{84+12\sqrt{33}}{2} $
| 3(x-6)=5x=10-4x | | 4(x+35)-3(-x+35)=0 | | 19-6g=11 | | 10x-12=4x+36 | | g-1=3-2-1 | | 4x+6=7x+27 | | 4(7k-1)=248 | | x^2-8x+576=0 | | j+12/9=3 | | 6x-10+2x=2(2x+5)+4x | | 0.02x=0.8 | | 8x+15=x+64 | | 6x+2+14=28 | | s-62=57 | | -3(f-88)=-27 | | -7(6a-8)=-224 | | 2(10a+5)=170 | | k-13/2=23 | | -4x+5+2x=-13 | | 10+5r=35 | | 3a+4=-a-2 | | (3x+10)+(2x+15)=180 | | -7y+4=18 | | 10x=0.08 | | d-28/6=9 | | 7x+19=-8(x+7) | | 81=t-32 | | (s-19)-7=-14 | | 10x=0.09 | | 81=t32 | | 3x-5x+7=x-9+16 | | 0.09=10x |